Section 2.6 Limits at Infinity: Horizontal Asymptotes

In this section we observe how horizontal asymptotes arise when we speak in terms of limits. We will also discuss the precise definition of a horizontal asymptote and examine different examples.

In past sections, we let x approach a specific number and the value of y became large (positive or negative). In this section we observe how letting the x value become large (positive or negative) affects the value of y.

Let's start by looking at an example.
Example: Analyze the behavior of $\boldsymbol{f}(\boldsymbol{x})=\frac{x^{3}+4}{x^{3}-2}$ as x approaches large (positive or negative) values. From Algebra and Precalculus we know that $f(x)$ has a horizontal asymptote at $y=1$. Let's make a table with large (positive and negative) values.

\mathbf{x}	$\mathbf{f}(\mathbf{x})$	\mathbf{x}	$\mathbf{f}(\mathbf{x})$
1	-5	-1	-1
5	1.0488	-5	0.9528
10	1.0060	-10	0.9940
20	1.0008	-20	0.9993
50	1.0000	-50	1.0000
100	1.0000	-100	1.0000
1000	1.0000	-1000	1.0000

As \boldsymbol{x} gets larger (positive and negative) the values of $f(\boldsymbol{x})$ gets closer and closer to 1 . Mathematically, for \boldsymbol{x} approaches positive large number we write this as $\lim _{x \rightarrow \infty} f(x)=\mathbf{1}$ or $\lim _{x \rightarrow \infty} \frac{x^{3}+4}{x^{3}-\mathbf{2}}=\mathbf{1}$

Intuitive Definition of a Limit at Infinity: Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrarily close to L by replacing x to be sufficiently large.
Similarly, in the last example we observe that as \mathbf{x} approaches negative large numbers, $f(x)$ gets close to1.
Mathematically, $\lim _{x \rightarrow-\infty} f(x)=1$ or $\lim _{x \rightarrow-\infty} \frac{x^{3}+4}{x^{3}-2}=1$
Definition: Let f be a function defined on some interval $(-\infty, a)$. Then $\lim _{x \rightarrow-\infty} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{L}$ means that the values of $f(x)$ can be made arbitrarily close to L by requiring x to be sufficiently large negative.

By combining the last two definitions we get the following:

Definition: The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

Example: Find $\lim _{x \rightarrow \infty} f(x), \lim _{x \rightarrow-\infty} f(x)$, and $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\frac{1}{x-1} & \text { if } x<1 \\ 2 & \text { if } x \geq 1\end{array}\right\}$ Plot the function.

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=2 \\
\lim _{x \rightarrow-\infty} f(x)=0 \\
\lim _{x \rightarrow 1} f(x)=D N E
\end{gathered}
$$

Theorem: If $r>0$ is a rational number, then $\lim _{x \rightarrow \infty} \frac{\mathbf{1}}{x^{r}}=\mathbf{0}$ If $r>0$ is a rational number such that x^{r} is defined for all x , then $\lim _{x \rightarrow-\infty} \frac{\mathbf{1}}{x^{r}}=0$.

Example: Evaluate $\lim _{x \rightarrow-\infty} \frac{x-2}{x^{2}+1}$ From Precalculus we know that the answer is 0 , but let's do some algebra to show why.
$\lim _{x \rightarrow \infty} \frac{x-2}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{\frac{x-2}{x^{2}}}{\frac{x^{2}+1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}-\frac{2}{x^{2}}}{1+\frac{1}{x^{2}}}=\frac{\lim _{x \rightarrow-\infty} \frac{1}{x}-\frac{2}{x^{2}}}{\lim _{x \rightarrow-\infty} 1+\frac{1}{x^{2}}}=\frac{\lim _{x \rightarrow-\infty}\left(\frac{1}{x}\right)-\lim _{x \rightarrow-\infty}\left(\frac{2}{x^{2}}\right)}{\lim _{x \rightarrow-\infty}(1)+\lim _{x \rightarrow-\infty}\left(\frac{1}{x^{2}}\right)}=\frac{0-0}{1+0}=0$
Thus $\lim _{x \rightarrow-\infty} \frac{x-2}{x^{2}+1}=0$.
Example: Evaluate $\lim _{x \rightarrow \infty} \frac{\sqrt{1+4 x^{6}}}{2-x^{3}}$ Divide both numerator and denominator by x^{3}.
$\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{1+4 x^{6}}}{x^{3}}}{\frac{2-x^{3}}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1+4 x^{6}}{x^{6}}}}{\frac{2-x^{3}}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{6}}+4}}{\frac{2}{x^{3}}-1}=\frac{\sqrt{\lim _{x \rightarrow \infty} \frac{1}{x^{6}}+\lim _{x \rightarrow \infty} 4}}{\lim _{x \rightarrow \infty} \frac{2}{x^{3}}-\lim _{x \rightarrow \infty} 1}=\frac{\sqrt{0+4}}{0-1}=\frac{\sqrt{4}}{-1}=-2$

Now let's analyze the natural exponential function $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$. Its graph is plotted below.

Notice that as \boldsymbol{X} approaches $-\infty$, y approaches 0 .

Thus $\lim _{x \rightarrow-\infty} e^{x}=0$

Precise Definition of a Limit at Infinity: Let f be a function defined on some interval (a, ∞), then $\lim _{x \rightarrow \infty} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{L}$ means that for every $\varepsilon>0$ there is a corresponding number \boldsymbol{M}, such that If $x>M$, then $|f(x)-L|<\varepsilon$

Graphically

Similarly for negative infinity:

Definition: Let f be a function defined on some interval $(-\infty, a)$. Then $\lim _{x \rightarrow-\infty} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{L}$ means that for every $\varepsilon>0$, there is a corresponding number N, such that If $\boldsymbol{x}<\boldsymbol{N}$, then $|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{L}|<\boldsymbol{\varepsilon}$.

Example: Plot the idea of a limit as \boldsymbol{X} approaches ∞ for the function $f(x)=\frac{1}{x}$ using the definition.

We need to find a value of \boldsymbol{x} greater than some \boldsymbol{N} such that the difference between $f(x)$ and the limit value, 0 , is less than ε.

Notice we can find a value of N, depending on the value of ε that we might want.
Lastly, some functions do not approach a specific \boldsymbol{y} value as \boldsymbol{x} approaches positive or negative infinity.. Here is the definition for this situation for \boldsymbol{x} approaching positive infinity.

Definition of an Infinite Limit at Infinity: Let \boldsymbol{f} be a function defined on some interval (a, ∞). Then $\lim _{x \rightarrow \infty} \boldsymbol{f}(\boldsymbol{x})=\infty$ means that for every positive number \boldsymbol{M} there is a corresponding positive number \boldsymbol{N} such that if $x>N$ then $f(x)>M$.

There is a similar definition for x approaches negative infinity.

