Section 2.6 Limits at Infinity: Horizontal Asymptotes

In this section we observe how horizontal asymptotes arise when we speak in terms of limits. We will also discuss the precise definition of a horizontal asymptote and examine different examples.

In past sections, we let x approach a specific number and the value of y became large (positive or negative). In this section we observe how letting the x value become large (positive or negative) affects the value of y.

Let's start by looking at an example.

Example: Analyze the behavior of $f(x) = \frac{x^3+4}{x^3-2}$ as x approaches large (positive or negative) values. From Algebra and Precalculus we know that f(x) has a horizontal asymptote at y = 1. Let's make a table with large (positive and negative) values.

x	f(x)	x	f(x)
1	-5	-1	-1
5	1.0488	-5	0.9528
10	1.0060	-10	0.9940
20	1.0008	-20	0.9993
50	1.0000	-50	1.0000
100	1.0000	-100	1.0000
1000	1.0000	-1000	1.0000

As *x* gets larger (positive and negative) the values of f(x) gets closer and closer to 1. Mathematically, for *x* approaches positive large number we write this as $\lim_{x\to\infty} f(x) = 1$ or $\lim_{x\to\infty} \frac{x^3+4}{x^3-2} = 1$

Intuitive Definition of a Limit at Infinity: Let f be a function defined on some interval (a, ∞). Then $\lim_{x\to\infty} f(x) = L$

means that the values of f(x) can be made arbitrarily close to L by replacing x to be sufficiently large.

Similarly, in the last example we observe that as **x** approaches negative large numbers, **f**(**x**) gets close to1.

Mathematically, $\lim_{x\to-\infty} f(x) = 1$ or $\lim_{x\to-\infty} \frac{x^{3}+4}{x^{3}-2} = 1$

Definition: Let f be a function defined on some interval $(-\infty, a)$. Then $\lim_{x\to-\infty} f(x) = L$ means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.

By combining the last two definitions we get the following:

Definition: The line y = L is called a horizontal asymptote of the curve y = f(x) if either

$$\lim_{x\to\infty} f(x) = L$$
 or $\lim_{x\to-\infty} f(x) = L$

Example: Find $\lim_{x\to\infty} f(x)$, $\lim_{x\to-\infty} f(x)$, and $\lim_{x\to1} f(x)$ where $f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x < 1 \\ 2 & \text{if } x \ge 1 \end{cases}$

Plot the function.

$\lim_{x\to\infty}f(x)=2$	
$\lim_{x\to-\infty}f(x)=0$	
$\lim_{x \to 1} f(x) = DNE$	

Theorem: If r > 0 is a rational number, then $\lim_{x\to\infty} \frac{1}{x^r} = 0$ If r > 0 is a rational number such that x^r is defined for all x, then $\lim_{x\to-\infty} \frac{1}{x^r} = 0$.

Example: Evaluate $\lim_{x\to-\infty} \frac{x-2}{x^2+1}$ From Precalculus we know that the answer is 0, but let's do some algebra to show why.

$$\lim_{x \to \infty} \frac{x-2}{x^2+1} = \lim_{x \to -\infty} \frac{\frac{x-2}{x^2}}{\frac{x^2+1}{x^2}} = \lim_{x \to -\infty} \frac{\frac{1}{x} - \frac{2}{x^2}}{1 + \frac{1}{x^2}} = \frac{\lim_{x \to -\infty} \frac{1}{x} - \frac{2}{x^2}}{\lim_{x \to -\infty} 1 + \frac{1}{x^2}} = \frac{\lim_{x \to -\infty} \left(\frac{1}{x}\right) - \lim_{x \to -\infty} \left(\frac{2}{x^2}\right)}{\lim_{x \to -\infty} \left(\frac{1}{x^2}\right)} = \frac{0 - 0}{1 + 0} = 0$$

Thus $\lim_{x \to -\infty} \frac{x-2}{x^2+1} = 0.$

Example: Evaluate $\lim_{x \to \infty} \frac{\sqrt{1+4x^6}}{2-x^3}$ Divide both numerator and denominator by x³.

$$\lim_{x \to \infty} \frac{\frac{\sqrt{1+4x^2}}{x^3}}{\frac{2-x^3}{x^3}} = \lim_{x \to \infty} \frac{\sqrt{\frac{1+4x}{x^6}}}{\frac{2-x^3}{x^3}} = \lim_{x \to \infty} \frac{\sqrt{\frac{1}{x^6}+4}}{\frac{2}{x^3}-1} = \frac{\sqrt{\lim_{x \to \infty} \frac{1}{x^6} + \lim_{x \to \infty} 4}}{\lim_{x \to \infty} \frac{2}{x^3} - \lim_{x \to \infty} 1} = \frac{\sqrt{0+4}}{0-1} = \frac{\sqrt{4}}{-1} = -2$$

Now let's analyze the natural exponential function $y = e^x$. Its graph is plotted below.

Notice that as \boldsymbol{x} approaches $-\infty$, y approaches 0.

Thus $\lim_{x\to-\infty} e^x = 0$

Precise Definition of a Limit at Infinity: Let *f* be a function defined on some interval (a, ∞) , then $\lim_{x\to\infty} f(x) = L$ means that for every $\varepsilon > 0$ there is a corresponding number *M*, such that If x > M, then $|f(x) - L| < \varepsilon$

Graphically

Similarly for negative infinity:

Definition: Let f be a function defined on some interval $(-\infty, a)$. Then $\lim_{x\to-\infty} f(x) = L$ means that for every $\varepsilon > 0$, there is a corresponding number N, such that If x < N, *then* $|f(x) - L| < \varepsilon$.

Example: Plot the idea of a limit as **x** approaches ∞ for the function $f(x) = \frac{1}{x}$ using the definition.

Notice we can find a value of N, depending on the value of ε that we might want.

Lastly, some functions do not approach a specific *y value* as *x* approaches positive or negative infinity. Here is the definition for this situation for *x* approaching positive infinity. **Definition of an Infinite Limit at Infinity:** Let f be a function defined on some interval (a, ∞) . Then $\lim_{x\to\infty} f(x) = \infty$ means that for every positive number M there is a corresponding positive number N such that if x > N then f(x) > M.

There is a similar definition for x approaches negative infinity.